行业动态
当前位置>>首页 >> 行业动态

量子力学预测的最低温度被突破,这是一个万物沉寂的世界

发布时间: 2017-01-17
   近日,美国国家标准与技术研究所(NIST)的物理学家将一个机械物体的温度降至新低,突破了所谓的“量子极限”。

   2017年1月12日,《自然》杂志刊文介绍了NIST的这个新实验。文章描述了如何将一只纳米尺度上的机械鼓---- 一个可以振动的铝薄膜----冷却到低于五分之一个能量量子的温度,这个温度低于量子力学预言的最低温度。

     NIST的科学家说,理论上这个技术可以把物体冷却到绝对零度,这是一个万物沉寂、没有能量、也没有运动的温度。
    “鼓被冷却到的温度越低,在应用中的表现就越好,”该实验的负责人、NIST物理学家John Teufel说。“传感器会更加地灵敏;储存器可以保存更久的信息。若用来造量子计算机,计算过程会没有任何失真,可以准确地给出你想要的答案。”
“实验结果对该领域的专家来说完全是个惊喜!”Teufel的小组的另一位主要负责人Jose Aumentado说,“这是一个十分优美的实验,必将产生巨大影响。”
     铝鼓的直径200纳米,厚度100纳米,它嵌在一个特殊设计的超导电路中,鼓的振动可以影响在其腔体中来回反射的微波。微波也是电磁波的一种,是一种看不见的“光”,比起可见光来,它的波长更长,频率更低。
腔体中的微波会调整自身频率来适应鼓的自然共振频率。每一个鼓腔都有一个自然共振频率,像“声调”一样。用手指在装有水的水杯边缘磨擦,水杯会嗡嗡作响,杯中水量决定水杯空腔的大小,从而产生不同的音调。鼓腔的自然频率也是同样的道理。
     NIST的科学家曾将量子鼓冷却到它的基态,即三分之一个能量量子。他们使用了一种叫边带冷却(sidebandcooling)的方法,在超导电路上施加了一个频率略低于鼓腔谐振频率的振荡电流,鼓腔在电流作用下振动产生相同频率的光子,如前所述,这些光子又会被调整到略高的鼓腔自然谐振的频率上。
      最近的一次NIST实验又有了新的改进----使用“压缩态光”(squeezed light)来驱动电路。“压缩”(Squeezing)是一个量子力学的概念,一个处于压缩态的光子,其噪音或量子扰动被压缩到了最低。
在量子扰动的制约下,传统技术只能将物体冷却到了某一个最低温度,NIST的团队通过使用压缩光,获得了更加精确的电流频率。这个特殊的电路可以产生十分“纯净”的光子,将量子扰动控制在最低水平,从而突破了最低温度的限制。NIST的实验证明了压缩态光可以突破一直以来的冷却极限,Teufel说,这也适用于更大的物体或者低频的物体,这些往往是最难冷却的。

       量子鼓有着很多应用,比如由量子计算机和经典计算机组成的混合型计算机,理论上说,量子计算机在某些目前还十分棘手的计算问题上会得心应手。

转自:https://www.cryogenicsociety.org

版权所有 低温技术与测试应用服务平台 沪交ICP备2010794 地址:上海市闵行区东川路800号/上海交通大学 中意绿色能源楼

邮编:200240 电话:021-34206295 / 021-34206309 电子邮箱:cryosh@163.com 技术支持:上海屹超